Linux v1.2成功移植到ARM平台 (linux v1.2 arm)

Linux v1.2 Successfully Ported to ARM Platform

Introduction

Linux has gned worldwide recognition as an open-source, Unix-like operating system. When Linus Torvalds created the first Linux kernel in 1991, he never imagined that it would become one of the most versatile and widely used OS in the world. Linux was originally designed for x86-based personal computers but has over the years found its way into other hardware architectures including the ARM platform. In this article, we will discuss how Linux v1.2 was successfully ported to the ARM platform.

ARM Architecture

ARM (Advanced RISC Machines) is a reduced instruction set computing (RISC) instruction set architecture (ISA) developed by ARM Holdings. ARM processors are known for their energy efficiency, low power consumption, and high performance. The ARM architecture is widely used in embedded systems, artphones, tablets, and IoT devices. Linux, being an open-source OS, can run on a wide range of hardware platforms, including those based on the ARM architecture.

Linux v1.2

Linux 1.2 was released on March 7, 1995, and was the first version of Linux to run on machines with less than 4MB of RAM. At the time of its release, Linux had support for the i386 architecture, and ports to other architectures were actively being developed. The v1.2 release featured significant improvements over previous releases, including support for ELF binaries, shared libraries, and virtual memory management.

Porting Linux v1.2 to ARM

The initial work on porting Linux v1.2 to ARM began in 1995 by British programmer Russell King. Russell was inspired by the work of Dave Hillis, who had ported an earlier version of Linux to ARM. Russell started by modifying the Linux kernel source code to support the ARM platform, which required the development of a new set of drivers for the platform’s hardware devices. Russell also developed a new bootloader program, which is responsible for loading the Linux kernel into memory.

One of the biggest challenges in porting Linux to ARM was the lack of avlable documentation. At the time, ARM processors and their documentation were proprietary, making it difficult to develop open-source software for the platform. Russell had to rely on reverse engineering and trial and error to get the OS to run on ARM.

Another challenge was the limited memory avlable on the ARM-based devices. Linux v1.2 was designed to run on machines with less than 4MB of RAM, but many ARM-based devices had much less memory than that. Russell had to optimize the operating system to work within these limitations, which required significant manual effort.

Despite these challenges, Russell was successful in porting Linux v1.2 to the ARM platform, and the first ARM-based Linux kernel was released in 1996. Since then, Linux has become the dominant OS in the embedded systems market, with ARM processors being one of the most widely used architectures.

Conclusion

In conclusion, the successful porting of Linux v1.2 to ARM was a significant milestone in the history of Linux. It demonstrated the versatility of the OS, and its ability to run on a wide range of hardware architectures. The porting process required significant effort, and the challenges faced by Russell King are a testament to the dedication and tenacity of open-source developers. Today, Linux continues to evolve, and new ports to emerging architectures will undoubtedly be developed.


数据运维技术 » Linux v1.2成功移植到ARM平台 (linux v1.2 arm)